
ORIGINAL PAPER

Comparison of biometrical approaches for QTL detection
in multiple segregating families

Wenxin Liu • Jochen C. Reif • Nicolas Ranc •

Giovanni Della Porta • Tobias Würschum
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Abstract Detection of QTL in multiple segregating

families possesses many advantages over the classical QTL

mapping in biparental populations. It has thus become

increasingly popular, and different biometrical approaches

are available to analyze such data sets. We empirically

compared an approach based on linkage mapping meth-

odology with an association mapping approach. To this

end, we used a large population of 788 elite maize lines

derived from six biparental families genotyped with 857

SNP markers. In addition, we constructed genetic maps

with reduced marker densities to assess the dependency of

the performance of both mapping approaches on the mar-

ker density. We used cross-validation and resample model

averaging and found that while association mapping per-

formed better under high marker densities, this was

reversed under low marker densities. In addition to main

effect QTL, we also detected epistatic interactions. Our

results suggest that both approaches will profit from a

further increase in marker density and that a cross-

validation should be applied irrespective of the biometrical

approach.

Introduction

Detection of QTL has become an indispensable tool for

plant geneticists and plant breeders. QTL detection results

are the basis for our understanding of the genetic architec-

ture underlying complex traits. If QTL detection is done

within breeding populations, the results are of direct rele-

vance for applied plant breeding and facilitate the genera-

tion of novel, superior varieties by knowledge-based

breeding. Classical QTL mapping relied on biparental

crosses. The disadvantage of this approach is that only two

alleles are considered and that QTL effects are often spe-

cific for that population and, therefore, not easily transfer-

able (Holland 2007). To circumvent these disadvantages,

QTL mapping strategies have recently shifted from bipa-

rental populations to QTL detection in multiple segregating

families (Myles et al. 2009). This approach can potentially

increase the QTL detection power, the accuracy of QTL

localization, and provide more robust estimates of QTL

effects across different genetic backgrounds.

Two conceptually different approaches are available for

QTL detection in multiple segregating families: multiple-

line cross QTL (MC-QTL) mapping and association map-

ping (Würschum 2012). The differences between both

approaches are summarized in Table 1. MC-QTL mapping

is an extension of linkage mapping methodology to mul-

tiple families (Blanc et al. 2006) and has recently been

applied to an experimental population (Coles et al. 2010)

and a breeding population in maize (Steinhoff et al. 2011).

Association mapping on the other hand is based on linkage

disequilibrium (LD) and can be used for QTL detection in
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diverse panels of lines as well as in multiple families (Yu

et al. 2008; Myles et al. 2009). LD is population specific

and affected by different genetic factors (Flint-Garcia et al.

2003). Moreover, LD can be highly variable across the

genome (Whitt et al. 2002; van Inghelandt et al. 2011;

Würschum et al. 2011a) and in experiments based on

multiple families is also generated by the experimental

design (Verhoeven et al. 2006; Würschum et al. 2012a).

The QTL detection power and the mapping resolution

depend on the extent of LD. High LD between QTL and

the markers facilitates the detection of QTL with medium

or small effect, whereas lower LD only allows to detect

QTL with large effects. A major issue for association

mapping is the correction for population stratification

(Sillanpää 2011), and for association mapping with multi-

ple families, a family effect should be included in the

model in addition to cofactors which correct for genetic

background effects within families (Würschum et al.

2012a). Association mapping in multiple families has

recently been used to detect QTL in diverse crops such as

maize (e.g., Buckler et al. 2009; Lu et al. 2010; Liu et al.

2011), wheat (e.g., Reif et al. 2011a, b) or rapeseed (e.g.,

Würschum et al. 2012b). The major differences between

the two mapping approaches are the use of identity-by-state

(IBS) information in association mapping and identity-by-

descent (IBD) probabilities in MC-QTL mapping. In

addition, MC-QTL mapping operates with estimated con-

ditional probabilities in the regions between the markers,

whereas association mapping relies solely on the markers

in the available genetic map. Therefore, association map-

ping can be expected to more strongly depend on the

available marker density than MC-QTL mapping.

Whereas the advantages of QTL detection in multiple

segregating families are obvious, it remains unclear which

biometrical approach should best be applied to analyze a

given population. The main goal of this study was to

compare MC-QTL mapping and association mapping for

QTL detection in a large elite maize population. In

particular, the objectives of our study were to use cross-

validation and resample model averaging to compare MC-

QTL mapping and association mapping with regard to (1)

the predictive power, (2) the precision of QTL estimation,

and (3) their performance under different map densities. (4)

In addition, both approaches were compared with regard to

the detection of epistatic QTL.

Materials and methods

Plant materials and field experiments

The analyses are based on the population described in

Steinhoff et al. (2011). In brief, six F3 families, with a total

of 788 individuals were obtained from a diallel cross

between four dent inbreds (A, B, C, and D). The lines C

and D are more closely related with each other as compared

to the other two lines (Steinhoff et al. 2011). Each F3 plant

was selfed to obtain an F3:4 family which are the bulked

progenies of an individual F3 plant. Testcross progenies

were produced by mating the 788 F3:4 families and the four

parental inbreds to one elite inbred tester from the opposite

heterotic pool and unrelated by pedigree. All plant mate-

rials used in this study are proprietary to Syngenta Seeds,

Bad Salzuflen, Germany.

The testcross progenies were evaluated in 2007 in Italy

at 10 locations with unreplicated trials. Two-row plots

(8.4 m2) were machine planted (8 plants m-2) and har-

vested as grain trials. Data were collected for grain yield

(Mg ha-1), adjusted to a moisture concentration of

155 g kg-1, and grain moisture (g kg-1) at harvest.

Phenotypic data analyses and molecular data

In each environment, phenotypic data values were adjusted

for block effects with four checks. Best linear unbiased

estimates (BLUEs) across locations were determined by

Table 1 Overview of the differences between the two mapping approaches

MC-QTL mapping Association mapping

Based on Genetic linkage Linkage disequilibrium

IBS/IBD usage IBD at the parents level IBS

Genome coverage Markers and conditional probabilities; information

every 1 cM

Only markers; information depending on density of the

genetic map

Correction for family

structure

Family effect, QTL effects nested within families Inclusion of family effect in the model

Correction within families Cofactors selected across families Cofactors selected across families

Model Y ¼ JMþ XqBq þ
P

c 6¼q

XcBc þ e Y ¼ llþ Xf Mf þ Xqbq þ
P

c6¼q

Xcbc þ e

IBS and IBD refer to identity-by-state and identity-by-descent, respectively. Details of the two models are given in ‘‘Materials and methods’’
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assuming fixed genotypic effects for the testcross progenies

and the parents. Analyses were performed using PROC

GLM in the statistical software SAS (SAS Institute 2008).

For DNA extraction, each F3 plant was represented by

15 bulked F4 plants and genotyped with 857 SNP markers

that have been checked for their adherence to the expected

Mendelian segregation ratio. The consensus genetic map

has a total length of 1,580 cM and an average interval

length of 1.84 cM (Steinhoff et al. 2011). To assess the

effect of different marker densities on the QTL mapping

results of the two approaches, we constructed subsets of the

genetic map. Five fixed marker complements were chosen

to represent five different map densities (full marker set

with 1.84, 5, 10, 15, and 20 cM) optimizing the spacing

between the markers as well as possible (Fig. 3).

Linkage disequilibrium (LD) was assessed by the LD

measure r2 (Weir 1996) and significance of LD was tested

with Fisher’s exact tests (Hill and Robertson 1968). LD

computations were performed with the software package

Plabsoft (Maurer et al. 2008).

Multiple-line cross QTL mapping

QTL mapping was performed using the disconnected

model suggested by Blanc et al. (2006), which models QTL

effects as nested within families. Details are given in

Steinhoff et al. (2011). In brief, the model used was:

Y ¼ JMþ XqBq þ
X

c 6¼q

XcBc þ e

where Y was a N 9 1 vector with the testcross BLUE

values of the N progenies derived from P families. J was a

N 9 P matrix whose elements were 0 or 1 according to

whether or not individual i belonged to family p and M was

a P 9 1 vector of family specific means. Xq (Xc) was a

N 9 P matrix containing the expected number (ranging

from 0 to 2) of allele k for each individual in family p at

QTL q (cofactor c), Bq (Bc) was a P 9 1 vector of the

expected allele substitution effects of QTL q (cofactor c) in

family p, and e was the vector of the residuals.

Cofactor selection was performed using the Schwarz

(1978) Bayesian information criterion (SBC) implemented

in PROC GLMSELECT implemented in the statistical

software SAS (SAS Institute 2008). Testing for the pres-

ence of a putative QTL in an interval was performed with a

likelihood-ratio test using statistical software R (Broman

and Sen 2009). The experiment-wise type I error was

determined to be Pe \ 0.10, using 2,000 permutation runs

(Churchill and Doerge 1994). Support intervals for the

detected QTL were calculated based on a 1.5 LOD drop.

For a better comparability with the results from the asso-

ciation mapping approach, a 10 cM window surrounding

each detected QTL was applied. If another, colinear QTL

was detected within that window, only the QTL with the

higher LOD peak was kept.

The proportion of genotypic variance (pG) explained by

the detected QTL within families was calculated by a

regression of the phenotypic values of the individuals

minus the respective family mean (corresponds to the

within family variance) on the detected QTL to obtain R2
adj.

The ratio pG ¼ R2
adj=h2 yielded the proportion of genotypic

variance (Utz et al. 2000).

The epistasis scan for pairwise interactions was done

with the model described above, which was extended by

the term Xq0Bq0 for the second locus and the interaction

term between the two loci q and q0 Xqq0Bqq0. We used an

a-level of 0.05 and followed the suggestion of Holland

et al. (2002), dividing the a-level by the number of possible

independent pairwise interactions between chromosome

regions, assuming two separate regions per chromosome

(P \ 2.6e-4).

Association mapping

Association mapping was done with a biometrical model

which previously performed well in a comparison of dif-

ferent statistical approaches for association mapping in

multiple families, Model B from Würschum et al. (2012a):

Y ¼ llþ Xf Mf þ Xqbq þ
X

c 6¼q

Xcbc þ e

In this model, Y is an N 9 1 column vector of the

BLUE values of phenotypic data of N testcross progenies,

coming from F families (F = 6); l is an N 9 1 column

vector containing constant 1; l is the intercept; Xq (Xc) is

an N 9 1 column vector containing the marker information

(coded as 0-1-2) of each individual at marker q (cofactor

c); Xf is an N 9 F matrix whose elements are 0 or 1

according to whether an individual belongs to family f, and

Mf is an F 9 1 vector of family effects; bq (bc) is the

expected allele substitution effect of marker q (cofactor c);

and e is the vector of the residuals of the model.

In brief, an additive genetic model was chosen for the

progenies as described by Utz et al. (2000). We applied a

two-step procedure for QTL detection. In a first step,

stepwise multiple linear regression was used to select a set

of cofactors based on the Schwarz (1978) Bayesian crite-

rion (SBC) with a model including a family effect and

cofactors. Cofactor selection was performed using Proc

GLMSELECT implemented in the statistical software SAS

(SAS Institute 2008). In the second step, we calculated a P

value for the association of each marker with the pheno-

typic value for the F test with a full model (with marker

effect) against a reduced model (without marker effect) (for

details see Reif et al. 2010). The applied model includes a
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family effect, cofactors, and an SNP effect across families.

The Bonferroni–Holm procedure (Holm 1979) was used to

detect markers with significant (P \ 0.05) main effects.

The proportion of the genotypic variance explained by the

detected QTL was calculated as described above. For the

detection of epistasis, the model was extended and included

the main effects of the two loci q and q0, Xqbq and Xq0bq0,

and the interaction effect of the marker pair under con-

sideration Xqq0bqq0.

Cross-validation and resample model averaging

To evaluate the QTL mapping results of the two mapping

methods, a fivefold cross-validation approach accounting

for genotypic sampling was chosen (Utz et al. 2000; Schön

et al. 2004; Liu et al. 2012). The data set (DS) was sub-

divided into five genotypic samples without replacement.

To maintain the population structure and the relative con-

tribution of the families to the data set, random genotypic

sampling was done separately within each family and then

combined across families. Four of the five genotypic

samples were used as the estimation set (ES) for QTL

detection, localization, and estimation of their genetic

effects. The fifth genotypic sample remained as an inde-

pendent sample to form the test set (TS). This TS was used

to validate the QTL results from the ES and to obtain

unbiased estimates of the QTL effects and the genotypic

variance explained by the QTL. The randomization of

genotypes in ES and TS was repeated 600 times. QTL

detection was done in the DS and in the ES, whereas the TS

was used to validate the results from the corresponding ES.

The QTL effects estimated in the ES were used for pre-

diction in the TS and to obtain R2
adj between predicted and

observed phenotypic values (Würschum et al. 2012a). The

proportion of the genotypic variance of the detected QTL

in the ES (pG-ES) was compared with the proportion

explained in the TS (pG-TS) and the relative bias was cal-

culated as 1 - (pG-TS/pG-ES).

Our resample model averaging approach was similar to

the subagging (80 %) described by Valdar et al. (2009).

We used resampling without replacement as described for

the cross-validation. In contrast to Valdar et al. (2009), we

did not use forward selection to select the multiple-QTL

model, but used QTL detection by association mapping or

MC-QTL mapping.

Results

The linkage disequilibrium (LD) observed in the data set

with 788 individuals genotyped with 857 SNP markers

showed a decrease with increasing genetic map distance

(Fig. 1a). For marker distances below 1 cM, the median r2

was only around 0.2, whereas the upper quantile was

around 0.5.

For the full data set (DS) including all markers, asso-

ciation mapping detected more QTL than MC-QTL map-

ping for both traits (Table 2). The proportion of genotypic

variance (pG) explained by these QTL, however, was

higher for MC-QTL mapping than for association mapping.

By contrast, the cross-validation approach revealed a

higher proportion of explained genotypic variance in the

test set (TS) for the association mapping QTL, despite the

lower pG in the DS and in the ES. This also shows in

the higher relative bias in pG estimates for MC-QTL

mapping than for association mapping, i.e., the reduction of

pG from the estimation set to the test set. The unbiased

estimates of pG in the TS amounted to 12.6 and 9.9 % for
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Fig. 1 Linkage disequilibrium and cross-validated performance of

the two mapping approaches. a Distribution of linkage disequilibrium

(LD) between linked marker pairs for different genetic map distances

between the two markers as well as the LD observed between

unlinked marker pairs (unlinked). b, c Proportion of explained

genotypic variance relative to that observed with the full marker

density for the QTL detected by association mapping (AM) and

multiple-line cross QTL mapping (MC-QTL) for b grain yield and

c grain moisture
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grain yield and 24.3 and 15.3 % for grain moisture, for

association mapping and MC-QTL mapping, respectively.

The resample model averaging (RMA) revealed that

many of the QTL positions identified by association map-

ping or MC-QTL mapping were identical between the two

approaches (Fig. 2). There were, however, also QTL that

were only detected by one of the approaches, but not by the

other. Some of the QTL detected with the full data set were

detected with a high frequency in the RMA runs, whereas

other QTL were only detected in a small number of RMA

runs. For both traits, the frequency of RMA runs in which a

QTL was detected was generally lower for MC-QTL

mapping than for association mapping. Another difference

that became apparent in the RMA approach was that the

peaks which consequently define the position of the QTL

were much broader for MC-QTL mapping. With regard to

the detected QTL, we found that generally the results from

association mapping and from MC-QTL mapping were

in good accordance, and the LOD profile and the

-log10(P value) bars followed the same trend (Figs. 4, 5).

At positions where a peak in the LOD curve indicated a

QTL, there was often also a significant P value observed in

association mapping.

We compared the results obtained with the full map with

results obtained with lower map densities to assess the

effect of different genetic map densities. To this end, we

constructed genetic maps that were subsets of the full

marker map, which had average map distances of 5, 10, 15,

Table 2 Comparison of the

performance of association

mapping (AM) and multiple-

line cross QTL mapping

(MCM) under different marker

densities assessed by fivefold

cross-validation

Number of detected QTL in the

data set (QTLDS) and averaged

over estimation sets (QTLES).

Percentage of the proportion of

genotypic variance explained by

the detected QTL in the data set

(pG-DS), the estimation set

(pG-ES), and in the test set

(pG-TS), as well as the relative

bias (pG-Bias)

All markers 5 cM 10 cM 15 cM 20 cM

AM MCM AM MCM AM MCM AM MCM AM MCM

Grain yield

QTLDS 9 7 5 7 4 4 4 7 5 4

pG-DS 29.0 43.6 16.1 32.3 10.2 16.2 14.9 22.0 12.5 8.9

QTLES 7.3 8.9 5.0 6.2 2.5 5.0 2.5 4.5 2.7 2.2

pG-ES 34.7 40.2 21.8 31.3 11.2 25.0 12.1 23.1 11.0 10.4

pG-TS 12.6 9.9 5.1 8.0 3.1 6.8 3.5 8.3 3.9 3.5

pG-Bias 63.7 75.4 76.6 74.4 72.3 72.8 71.1 64.1 64.5 66.3

Grain moisture

QTLDS 22 16 12 13 8 12 5 9 6 4

pG-DS 48.6 63.2 32.8 42.5 23.0 33.5 13.6 25.5 16.8 15.4

QTLES 17.1 15.6 10.8 12.5 7.1 10.4 4.8 8.0 5.3 6.1

pG-ES 53.5 50.0 37.6 42.8 24.7 36.2 17.4 29.5 19.2 24.0

pG-TS 24.3 15.3 17.0 15.2 11.2 11.8 7.9 10.7 9.8 10.3

pG-Bias 54.6 69.4 54.8 64.5 54.7 67.4 54.6 63.7 49.0 57.1
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Fig. 2 Frequency distributions of QTL detected by a association mapping or b MC-QTL mapping in 600 resample model averaging (RMA) runs

for grain yield (GY) and grain moisture (GM). The arrowheads indicate the positions of the QTL detected with the full data set
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and 20 cM (Fig. 3). The markers in the reduced maps were

chosen to optimize the spacing between them. We found

that for these reduced marker maps, the number of detected

QTL and the proportion of genotypic variance explained in

the data set were reduced compared to the full marker set

for both traits (Table 2). By contrast, the relative bias was

Chr 1 32 4 65 7 98 10

Full

5 cM

10 cM

15 cM

20 cM

Fig. 3 Genetic maps with the different marker densities used in this study. The full map contains all 857 markers, whereas the others represent

four different average map densities (5, 10, 15, and 20 cM) optimizing the spacing between the markers as well as possible

Chr. 1 Chr. 2 Chr. 3 Chr. 4 Chr. 5

Chr. 6 Chr. 7 Chr. 8 Chr. 9 Chr. 10

F
ul

l m
ar

ke
r

5 
cM

F
ul

l m
ar

ke
r

5 
cM

10
 c

M
10

 c
M

15
 c

M
15

 c
M

0 100 200 0 60 120 0 100 0 100 0 100

20
 c

M

0 60 120 0 60 120 0 60 120 0 60 120 0 60 120

20
 c

M

15
0

LO
D

-lo
g1

0 
(P

)15
0

15
0

LO
D

-lo
g1

0 
(P

)15
0

-lo
g1

0 
(P

)15
0

15
0

LO
D

-lo
g1

0 
(P

)15
0

15
0

LO
D

-lo
g1

0 
(P

)15
0

15
0

LO
D

-lo
g1

0 
(P

)15
0

15
0

LO
D

-lo
g1

0 
(P

)15
0

15
0

LO
D

15
0

LO
D

-lo
g1

0 
(P

)15
0

15
0

LO
D

-lo
g1

0 
(P

)15
0

-lo
g1

0 
(P

)15
0

15
0

LO
D

Fig. 4 Comparison of

association mapping and MC-

QTL mapping results for grain

yield based on the different

genetic maps. LOD score

profiles from MC-QTL mapping

(in blue) and -log10(P values)

from association mapping as

vertical bars (in red) for all ten

chromosomes. The dotted line
indicates the threshold for

MC-QTL mapping, which was

determined by permutation

tests, and the dashed line
indicates the significance

threshold for association

mapping (P \ 0.05 Bonferroni

corrected). The positions on the

chromosomes are given in cM

(color figure online)
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comparable for all map densities. In comparison to the

results from the full marker set, there was an almost linear

decrease of the pG observed in the DS and in the TS with

reduced map density for grain moisture, whereas for grain

yield there was mainly a strong decrease from the full

marker set to the 5 cM map density (Fig. 1b, c). Whereas

the decrease in pG was comparable for association mapping

and MC-QTL mapping for the DS, the pG in the TS was

much less affected for MC-QTL mapping. The pG in the TS

that could be realized with the lowest map density (20 cM)

was relatively low with approximately 4 % for grain yield

and around 10 % for grain moisture (Table 2). Comparing

the LOD profiles from MC-QTL mapping and the P values

from association mapping for the different map densities,

we found that the LOD profiles at QTL positions were

rather narrow for the full marker set, but became broader

with decreasing map density (e.g., grain moisture QTL on

chromosome 9) (Figs. 4, 5). In addition, some LOD peaks

also shifted position and became flatter or even non-sig-

nificant (e.g., grain yield QTL on chromosome 2 or grain

moisture QTL on chromosome 7). The RMA based on the

different map densities revealed that some QTL that were

detected with the full marker set were not detected any

more with reduced map densities (Fig. 6). This reduction in

the number of detected QTL was comparable for both

approaches, association mapping and MC-QTL mapping

(Table 2). The reduction in the frequency of RMA runs in

which a locus was identified as QTL appeared more pro-

nounced for MC-QTL mapping than for association map-

ping (Fig. 6).

We performed a full two-dimensional scan for epistatic

interactions for association mapping and MC-QTL map-

ping with the full data set including all markers. For MC-

QTL mapping, we observed five regions for grain yield and

four for grain moisture, which potentially indicate an epi-

static interaction (Fig. 7). By contrast, many more marker–

marker interactions were detected by association mapping.

For grain yield, 345 significant interactions were detected

and for grain moisture, 263. There were, however, also

clusters of significant interactions which are more likely to

be true-positive epistatic QTL. Some loci appeared to

interact with many other loci throughout the genome (e.g.,

locus on chromosome 1 for grain moisture). The compar-

ison of the epistatic QTL detected with the two approaches

revealed little congruency.

Discussion

Statistical properties of the two biometrical approaches

QTL detection in multiple segregating families, as

opposed to single biparental populations, is becoming the

method of choice for both, plant scientists and plant

breeders. Different biometrical approaches for QTL

detection are propagated and the aim of this study was to

compare the two most prominent ones: association map-

ping and multiple-line cross QTL mapping (Blanc et al.

2006; Yu et al. 2008; Würschum 2012). MC-QTL map-

ping is a composite interval mapping (CIM) approach

(Jansen and Stam 1994; Zeng 1994), in which cofactors

are selected to control the genetic background, and map-

ping is done based on marker information as well as on

conditional probabilities for the regions not covered by

markers. It is an identity-by-descent approach that allows

tracing the parental origin of alleles and therefore provides

information beyond that of the marker status. Association

mapping on the other hand is based on association map-

ping methodology and purely uses the identity-by-state

(IBS) information contained in the marker, irrespective of

which parent the allele is derived. The advantage of

association mapping is that it potentially enables a higher

mapping resolution and thus more accurate QTL positions

for an implementation in marker-assisted selection pro-

grams. This is, however, dependent on the LD present in

the population under study. Association mapping is based

on LD between markers and the QTL and only high LD

will facilitate the detection of medium or small effect

QTL. This approach, therefore, strongly depends on the

available marker density and is expected to perform better

with high map densities.

The LD observed in this population was comparable to a

recent study in elite maize (Van Inghelandt et al. 2011) and

showed a rapid decline with genetic map distance (Fig. 1a).

For closely linked markers, we observed moderate LD,

which likely enables the detection of QTL with main or

medium effects, whereas QTL with small effects may

escape detection unless they are by chance in high LD with

a marker. It has recently been shown that the choice of an

appropriate biometrical model is crucial for association

mapping and that a model incorporating cofactors and an

effect for the segregating family performed best (Würs-

chum et al. 2012a). A recent analysis using both MC-QTL

mapping models has shown that for the data set underlying

this study, the disconnected model performed much better

(Steinhoff et al. 2011) and we, therefore, used that model

for the comparison study.

Comparison of association mapping and MC-QTL

mapping

Whereas association mapping detected more QTL, the

proportion of genotypic variance explained by the QTL

was higher for MC-QTL mapping (Table 2). The relative

bias in pG estimates was, however, lower for association

mapping, indicating that these estimates are more robust.
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For both traits, the unbiased estimate of pG obtained by

cross-validation (pG-TS) was higher for association map-

ping pointing to a higher predictive power of this approach.

This difference was, however, not big and for both traits

the cross-validated genotypic variance was rather low

considering that almost 800 individuals were examined in

this study. Schön et al. (2004) reported a much higher

cross-validated genotypic variance in a biparental popula-

tion of similar size. Our results with the full data set are

slightly lower, but comparable to those obtained by Blanc

et al. (2006) who also used six families and a total popu-

lation size of 900 individuals. As all these studies were

based on elite breeding material, it appears unlikely that

many more QTL with large effects were segregating in the

study of Schön et al. (2004). QTL effects may vary substan-

tially between populations (Liu et al. 2011; Steinhoff et al.

2011), which is also a major drawback of QTL detection in

single biparental populations, as the results are often not

transferable across populations (Holland 2007). This opens

another explanation for the different magnitude of validated

genotypic variance between the studies. The difference

between our study and that of Schön et al. (2004) is that even

though both used cross-validation, this is in the former case

done in multiple families in each of which the detected QTL

may have different effects. Even though lower in number,

these results probably reflect a more realistic estimate of the

genotypic variance that can be realized by including these

QTL in knowledge-based breeding.
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The RMA approach revealed that many of the QTL

positions were similar between association mapping and

MC-QTL mapping (Fig. 2). As we observed also QTL that

were only identified by one of the approaches, both also

possess distinct properties and may be used complemen-

tarily. The QTL which were identified in a high number of

RMA runs are more reliable, whereas those that were only

detected with a low frequency have a higher probability of

being false-positive QTL. The peaks at the QTL positions

were much broader for MC-QTL mapping than for asso-

ciation mapping. This indicates that association mapping

possesses a higher precision of QTL estimation than MC-

QTL mapping. This is further supported by the plot of the

LOD profiles and the -log10(P value) bars, which show the

same trendline, but at overlapping QTL positions the LOD

peaks are generally broader (Figs. 4, 5).

QTL detection under different map densities

For many agriculturally important crops, SNP markers

have become the marker type of choice and thousands or

even tens of thousands of SNPs are available. Even though

costs for genotyping are constantly decreasing, it still

remains an issue and it is unclear how many of the

available markers should be used in a customized analysis.

To address this question, we performed the full analysis by

association mapping and MC-QTL mapping using different

marker densities (Fig. 3). We found that for both approa-

ches, there was a comparable reduction in the number of

detected QTL. For the absolute values of cross-validated

genotypic variance (pG-TS) under reduced map densities,

MC-QTL mapping was better for grain yield, whereas for

grain moisture the two approaches were not much different

(Table 2). Considering the pG-TS in relation to that realized

with the full marker set, it appeared that MC-QTL mapping

was less susceptible to a reduction in marker density and

the results remained relatively stable, except for grain yield

under the lowest map density (Fig. 1b, c). This decrease in

the number of detected QTL and in the predictive power

was expected for association mapping, as fewer markers

reduce the probability of a QTL being in LD with one of

them. By contrast, MC-QTL mapping operates with con-

ditional probabilities and as expected was found to be more

robust and less affected by the reduced number of markers.

A possible reason for the observed decrease of pG-TS under

low map densities is that not every marker segregates in

each of the families, such that the gaps between adjacent

markers in the single families can be considerably larger
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than suggested by the average map distance (Table 3). If

these gaps exceed a certain size, the conditional probability

estimates become less accurate resulting in a loss in QTL

detection power and in the predictive power. For linkage

mapping in biparental populations, 20 cM is considered to

be the maximum distance between markers (e.g., Piepho

2000). Consistent with this, we observed a rapid decrease

in pG-TS estimates for MC-QTL mapping when the marker

densities in single families dropped below this threshold

(compare 15 and 20 cM average consensus map density)

(Fig. 1b; Table 3). This highlights that for the joint anal-

ysis of multiple families, it is the average map distance in

the single families and not that in the consensus map that

determines the QTL detection power.

Considering the constant decline of the cross-validated

genotypic variance with marker density indicates that the

predictive power could also in the full marker set be

increased further by applying more markers. This is espe-

cially true for association mapping, but to a lesser extent

also for MC-QTL mapping.

Detection of epistasis

Epistasis refers to interactions between two or more loci in

the genome (Carlborg and Haley 2004) and epistatic QTL

have recently been shown to be involved in the expression

of complex agronomic traits in diverse crops (e.g., Reif

et al. 2011a, b; Würschum et al. 2011b). Blanc et al.

(2006), using the connected model, detected both QTL

times background interactions and also QTL times QTL

epistasis. A problem that generally arises with epistasis

scans is the choice of an appropriate significance threshold.

Here, we followed the suggestion of Holland et al. (2002)

and corrected the a-level of 0.05 for the number of possible

independent pairwise interactions assuming two indepen-

dent regions on each chromosome (separated by the cen-

tromere). We detected epistatic QTL for grain yield and for

grain moisture with both biometrical approaches (Fig. 7a,

b). The major difference was in the number of detected

interactions. Whereas only few were detected by MC-QTL

mapping, many were detected by association mapping
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which were scattered throughout the entire genome.

Interestingly, there was little congruency between the

association mapping and the MC-QTL mapping results,

which again highlights that despite similarities both

approaches have their own specific properties.

Recent analyses have revealed the existence of epistatic

master regulators, loci which are involved in a large

number of interactions (Reif et al. 2011b; Würschum et al.

2011a). At least one such locus was identified here, namely

the locus on chromosome 1 affecting grain moisture

(Fig. 7b). This further substantiates the hypothesis that

such epistatic master regulators are involved in shaping the

expression of complex traits. Due to the large number of

epistatic interactions identified by association mapping, we

focused on the epistatic QTL detected by MC-QTL map-

ping. The interactions involved regions which sometimes

were also identified as main effect, but mainly regions in

which no main effect QTL was detected and which appear

only to be involved in epistatic interactions. This is

in accordance with results reported in sugar beet where

the majority of the interacting regions had no main

effect (Würschum et al. 2011b). The epistatic interaction

landscape is illustrated by the three-dimensional plots

(Fig. 7c, d).

Conclusions

We compared association mapping and linkage mapping

(MC-QTL) for QTL detection in multiple segregating

families. We found that with the full marker density,

association mapping realized a higher cross-validated

genotypic variance, whereas with lower marker densities,

this picture reversed and MC-QTL mapping performed

better. Both approaches, however, are likely to perform

even better with higher marker densities, and the strong

relative bias observed for both traits suggests that a cross-

validation strategy should be employed irrespective of the

applied biometrical approach.
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Genome-wide association mapping reveals epistasis and genetic

interaction networks in sugar beet. Theor Appl Genet 123:109–118
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